
Epidemiology & Data Science

+ Script
Yanru Xing
UNIVERSITY OF FLORIDA

R for Data Science
Hadley Wickham & Garrett Grolemund

Workflow: scripts

keyboard shortcut: Cmd/Ctrl + Shift + N

Benefits of using scripts editor:

1. Automatically save and
automatically load

2. Running code line by line, or run
multiple lines by selecting

3. Save script as file

File menu > selecting New File > R script

RStudio diagnostics
The script editor will highlight syntax errors with a red squiggly line and a cross in the sidebar:

Hover over the cross to see what the problem is:

RStudio will also let you know about potential problems:

What other common mistakes will RStudio
diagnostics report?
Readhttps://support.rstudio.com/hc/en-
us/articles/205753617-Code-Diagnostics to
find out.

https://support.rstudio.com/hc/en-us/articles/205753617-Code-Diagnostics

install.packages("tidyverse")

dplyr --- A Grammar of Data Manipulation

library(nycflights13)
library(tidyverse)

Type of each variable:
1. int --- intergers
2. dbl --- doubles or real numbers
3. chr --- character vectors, or strings
4. dttm --- date-times (a data + a time)
5. lgl --- logical, vectors contain only TRUE

or FALSE
6. fctr --- factors, categorical variables
7. data --- dates

• filter() --- pick observations by their values
• arrange() --- reorder the rows
• select() --- pick variables by their names
• mutate() --- create new variables with functions of existing variables
• summarise() --- collapse many values down to a single summary

Five key dplyr functions

1. The first argument is a data frame
2. The subsequent arguments describe what to do with the data frame
3. The result is new data frame

Filter rows with filter()
filter() allows you to subset observations based on their values. The first argument is the name of the data
frame. The second and subsequent arguments are the expressions that filter the data frame. For example, we
can select all flights on January 1st with:

Select observations using the comparison operators
Standard suite: >, >=, <, <=, != (not equal), and == (equal)

The easiest mistake to make:
filter(flights , month = 1)
#> Error: filter() takes unnamed arguments. Do you need `==`?

Comparison Operators

Another common problem you might encounter
when using ==: floating point numbers:

sqrt(2) ^ 2 == 2
#> [1] FALSE
1 / 49 * 49 == 1
#> [1] FALSE

near(sqrt(2) ^ 2, 2)
#> [1] TRUE
near(1 / 49 * 49, 1)
#> [1] TRUE

Boolean operators:

& is “and”
| is “or”
! is “not”

Logical Operators

Complete set of boolean
operations. x is the left-hand
circle, y is the right-hand
circle, and the shaded region
show which parts each
operator selects.

filter(flights, month %in% c(11, 12))

!(x | y) is the same as !x & !y

Logical Operators

Find flights that weren’t delayed (on arrival or departure) by more
than two hours, you could use either of the following two filters:

Missing values, or NAs (“not availables”)
NA represents an unknown value so missing values are “contagious”; almost any
operation involving an unknown value will also be unknown:

Missing Values

filter()
Filter() only includes rows where the condition is TRUE; it excludes both FALSE and NA values. If you
want to preserve missing values, ask for them explicitly:

Arrange Rows with arrange()
arrange() works similarly to filter() except that instead of selecting rows, it changes their order. It takes a data frame
and a set of column names (or more complicated expressions) to order by.

If you provide more than one column name, each additional column will be used to break ties in the values of preceding
columns:

Use desc() to re-order by a column in descending order:

Missing values are always sorted at the end:

It’s not uncommon to get datasets with hundreds or even thousands of
variables. In this case, the first challenge is often narrowing in on the
variables you’re actually interested in.

select() allows you to rapidly zoom in on a useful subset using operations
based on the names of the variables.

select() is not terribly useful with the flight data because we only have 19
variables, but you can still get the general idea:

Select Columns with select()

Add new variables with mutate()
mutate() adds new columns at the end of your dataset,
new columns that are functions of existing columns

Refer to columns that you’ve just created mutate()

Keep the new variables transmute()

Grouped summaries with summarise()
summarise() collapses a data frame to a single row

group_by(),
changes the
unit of
analysis from
the complete
dataset to
individual
groups

Combining multiple operations with the pipe
explore the relationship between the distance and average delay for
each location

Combining multiple
operations with the pipe

Grouped mutates (and filters)

Grouping is
most useful in
conjunction
with summaris
e(), but you
can also do
convenient
operations
with mutate()
and filter():

