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Abstract

Seed systems are critical for deployment of improved varieties, but also can serve as 

major conduits for the spread of seed-borne pathogens. As in many other epidemic systems, 

epidemic risk in seed systems often depends on the structure of networks of trade, social 

interactions, and landscape connectivity. In a case study, we evaluated the structure of an 

informal sweetpotato seed system in the Gulu Region of Northern Uganda, for its vulnerability to 

the spread of emerging epidemics, and its utility for disseminating improved varieties. Seed 

transaction data were collected by surveying vine sellers weekly during the 2014 growing 

season. We combined data from these observed seed transactions with estimated dispersal risk 

based on village-to-village proximity to create a multilayer network, or ‘supra-network’. Both 

the inverse power law function and negative exponential function, common models for dispersal 

kernels, were evaluated in a sensitivity analysis/uncertainty quantification across a range of 

parameters chosen to represent spread based on proximity in the landscape. In a set of simulation 

experiments, we modeled the introduction of a novel pathogen, and evaluated the influence of 

spread parameters on the selection of villages for surveillance and for management. We found 

that the starting position in the network was critical for epidemic progress and final epidemic 

outcomes, largely driven by node out-degree. The efficacy of node centrality measures was 

evaluated for utility in identifying villages in the network to manage and limit disease spread. 

Node degree often performed as well as other more complicated centrality measures for the 

networks where village-to-village spread was modeled by the inverse power law, while 

betweenness centrality was often more effective for negative exponential dispersal. This analysis 

framework can be applied to provide recommendations for a wide variety of seed systems.

Page 2 of 79



Andersen et al.   3

Introduction 

The identification of key locations for surveillance and management is an important 

problem in plant disease epidemiology, and it remains an open question whether the same 

locations are best for both in any given system. There are often multiple mechanisms for 

pathogen dispersal that must be integrated in models of dispersal risk to identify key locations. 

For example, formal and informal seed trade networks and the dispersal of pathogens by vectors 

may both be important risk components. Seed trade networks, or seed systems, are a critical 

component of global food security, but often also serve as human-mediated pathways for the 

regional and global dispersal of plant pathogens. 

Seed systems circulate planting material to farmers from a range of formal (commercial 

or regulated sector) and informal (farmer-based) sources (Coomes et al. 2015). Seed system 

actors may include farmers, multipliers, traders, NGOs, seed companies, breeding organizations, 

and communities. Seed security – defined as timely access to quality planting material by all, at a 

fair price (Almekinders et al. 1994;  Gibson et al. 2011;  McGuire and Sperling 2013;  Sperling 

2008) – is vital for improved livelihoods, particularly for smallholder farmers. Adequate access 

to diverse seed material with favorable traits, such as disease resistance or nutritional benefits 

(e.g., β-carotene biofortification), may also bring with it increased risk for novel pathogen 

introduction. Newly introduced pathogens or pathotypes can be particularly problematic, as 

methods for detection may be limited or unavailable, and host resistance may be unattainable for 

several years.

The provision of ‘clean’ or ‘pathogen-free’ seed is a major challenge to any seed system. 

In most low-income countries this problem is pronounced, with seed provisions that are local and 
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largely of unknown quality. A majority of farmers keep seed from previous seasons, or obtain 

seed from neighbors, local traders, or local markets, with some instances of long distance trade 

(Delaquis et al. 2018;  Gildemacher et al. 2009;  Pusadee et al. 2009). Having robust models of 

seed systems supports policy development, action planning in the face of emerging epidemics 

(such as surveillance, quarantine, variety deployment, and education), and risk assessments for 

possible system disruptions caused by shocks such as climate change or political unrest. 

A dramatic example of a likely seed-transmitted disease occurred in 2011 when maize 

lethal necrosis (MLN) was first reported in Kenya (Wangai et al. 2012) and soon was detected in 

several neighboring countries. MLN symptom expression results from coinfection with Maize 

chlorotic mottle virus (MCMV) and a potyvirus (Mahuku et al. 2015). It is likely that the MLN 

pathogens were first introduced through infected seed, and then spread rapidly through the 

landscape via seed and vector transmission. Since its introduction, MLN has been detected in 

several East African countries including Ethiopia, Uganda, South Sudan, Tanzania, DRC, and 

Rwanda (De Groote et al. 2016;  Hilker et al. 2017;  Mahuku et al. 2015). In our study, we 

consider an informal sweetpotato seed system, where ‘seed’ is not true botanical seed, but vine 

cuttings. In vegetatively-propagated seed systems, viruses and other seed-transmitted diseases 

are particularly important risks to yield and quality over successive cycles of propagation, and 

methods of control are limited (Thomas-Sharma et al. 2016). The problem of seed-transmitted 

virus introduction was illustrated in 2014 when Sri Lankan cassava mosaic virus (causing 

cassava mosaic disease) was first reported in Cambodia, presumably being introduced through 

infected seed material and has since been reported in Vietnam and China (Delaquis et al. 2018;  

Graziosi et al. 2016;  Uke et al. 2018;  Wang et al. 2018;  Wang et al. 2016). 
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Network analysis is a powerful analytic tool for studying the role of system components, 

used across many disciplines, including the analysis of epidemic spread and control in human, 

animal, plant, and computer systems (Buddenhagen et al. 2017;  Keeling and Eames 2005;  

Pastor-Satorras and Vespignani 2001;  Shaw and Pautasso 2014;  Silk et al. 2017). Seed systems 

and other epidemics mediated by trade networks are particularly amenable to network analysis 

because they are inherently networks with a suite of actors (network nodes) that move both 

genetic material and information through space and time (network links) (Pautasso 2015). 

Epidemics that are mediated by networks introduce underlying contact structures, in contrast to 

simpler models that assume homogeneous mixing (Keeling and Eames 2005). Contact structures 

may be empirically observed, or estimated by other means (Wiratsudakul et al. 2018). For 

example, connectivity may be estimated based on the distance between nodes in a landscape. 

Our study builds on concepts previously developed for studying epidemic spread in large- 

and small-scale plant trade networks (Buddenhagen et al. 2017;  Moslonka-Lefebvre et al. 2011;  

Nelson and Bone 2015;  Pautasso 2015;  Pautasso and Jeger 2008;  Pautasso et al. 2010) by 

considering not only observed seed trade network data, but also estimated dispersal risk outside 

the formal trade network (Harwood et al. 2009;  McQuaid et al. 2017). Previous studies of seed 

systems have often focused on understanding the effects of social ties, and how well seed system 

networks may conserve variety diversity in the landscape (Abay et al. 2011;  Pautasso 2015;  

Pautasso et al. 2013). For example, Pautasso et al. (2015) found that the degree distribution of an 

Ethiopian barley seed network, and particularly the out-degree of the starting node, influenced 

the percentage of the network that could be reached by a new variety.  In this study, we 

combined data layers for observed formal seed trade and inferred informal seed and vector 

movement in a multi-layer network, which we use to model epidemic risk and in region-wide 
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simulation experiments. Multi-layer networks can be used to model integrated seed system 

components such as the combination of seed movement networks and management information 

networks (Buddenhagen et al. 2017;  Garrett 2018). 

 High resolution data were collected for an informal sweetpotato vine seller network, 

where the communities to which each seller sold material were recorded over the course of a 

season, along with the relative quantities. On the other hand, spread of seed material and 

associated pathogens, once the vines reached the communities, was not studied and required 

estimation. When model parameters are unknown and difficult or impossible to observe, 

sensitivity analysis and uncertainty quantification can be used to evaluate the influence of 

parameter choice on model outcomes (Saltelli et al. 2000). In this study we considered a range of 

values of the spread parameters of both the inverse power law and negative exponential models, 

selected based on the assumption that there is a greater tendency for farmers to exchange 

planting material with neighboring villages than with those that are distant (Perales et al. 2005;  

Pusadee et al. 2009), and the probability of vector spread decreases with increasing distance. We 

evaluated the influence of parameter values on network link formation and subsequent epidemic 

progress under several scenarios of pathogen spread. 

Network analysis can play an important role in evaluating nodes important for targeted 

surveillance and mitigation of the movement of pathogens or other contaminants through seed 

systems and landscapes (Sutrave et al. 2012). Node centrality statistics –  such as node 

betweenness, eigenvector and degree centrality – can be calculated to define key nodes and 

actors in a system, and forecast the risk of pathogen introduction, pathogen spread, or technology 

diffusion in a cropping system (Garrett et al. 2018;  Garrett 2012;  Harwood et al. 2009;  

Moslonka-Lefebvre et al. 2011;  Pautasso 2015;  Pautasso and Jeger 2008;  Sanatkar et al. 2015). 
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For example, a study of wheat grain movement in the United States and Australia identified key 

locations that could be strategically targeted for sampling and management of mycotoxins 

(Hernandez Nopsa et al. 2015). For soybean rust in the U.S., priorities for targeting geographic 

nodes for sampling to forecast epidemic movement were identified (Sanatkar et al. 2015;  

Sutrave et al. 2012). Although there are a number of statistics available that are likely to be 

associated with the importance of a node in an epidemic, it is an open question as to which 

statistics are most important for prioritizing nodes for monitoring and management in real-world 

networks (Holme 2017). The nodes that are most important for epidemic maximization, 

quarantine, or surveillance (important traits for epidemic mitigation) are not always the same 

nodes (Holme 2017) and the best criteria for choosing nodes may be specific to a given system 

(Holme 2018). In our simulation experiments, nodes were selected for management based on 

their network centrality measures, mimicking a real-world scenario where it is necessary to apply 

management technologies prior to complete information about an invasion. In our study we 

define ‘management’ as the restriction of the exchange of infected seed material, in practice 

though phytosanitary regulation, quarantines, or the introduction of intensive management 

interventions.

 In this study we propose a general framework for analyzing multi-layer networks of 

observed and estimated seed trade date that can be translated to a broad range of seed systems. 

We (i) analyze, as a case study, key network properties within a real-world seed system 

important to regional food security; (ii) evaluate variety dissemination within this observed 

network, comparing the distribution of landraces and higher-nutrient introduced varieties;  (iii) 

model the progress of a potential seed-borne pathogen introduced into the network in a series of 

simulation experiments, and compare the use of different network statistics as selection criteria 
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for nodes to be intensively managed, nodes that maximize epidemic spread, and nodes best for 

epidemic surveillance; and (iv) perform sensitivity analysis / uncertainty quantification to 

determine the sensitivity of outcomes to the spread parameters of the models (both the inverse 

power law and negative exponential) used to construct the village-to-village transaction 

networks.

Materials and Methods

Study system: sweetpotato in Northern Uganda 

This study examines sweetpotato vine transactions in Northern Uganda. Sweetpotato is a 

major staple food crop in many African countries, and Uganda is the second largest producer in 

Africa, fourth globally (FAOSTAT 2013). Sweetpotato is generally grown by women in Uganda 

in small plots of land, close to the home, and is important for household food security (Behrman 

2011;  Johnson and Gurr 2016). In the last decade, sweetpotato has increased in importance due 

to the introduction of a β-carotene biofortified, orange-fleshed sweetpotato (OFSP), by 

HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and Health. 

OFSP varieties were introduced with the goal of addressing vitamin A deficiency in women and 

children in this region (Behrman 2011). The recent infusion of improved varieties through these 

programs, along with increasing adoption (Obong et al. 2017), could potentially serve as a new 

source of risk for disease spread in the region, which is why we highlight OFSP dissemination in 

this study.

Viral diseases are biotic constraints to sweetpotato production in Uganda and throughout 

Sub-Saharan Africa, with the most yield-limiting being sweet potato virus disease (SPVD), 

which occurs when a plant is co-infected with Sweet potato feathery mottle virus (SPFMV) and 
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Sweet potato chlorotic stunt virus (SPCSV) (Karyeija et al. 1998). Seed degeneration is the 

successive loss in yield over generations of seed planting material due to the accumulation of 

viruses and other seed borne pathogens, a particularly important problem for vegetatively-

propagated crops (Thomas-Sharma et al. 2016). Degeneration is highly problematic in informal 

seed systems where farmers tend to save seed season-to-season and where certified seed sources 

are rare or non-existent. The normal planting material for sweetpotato is foliar vine cuttings, and 

both SPFMV and SPCSV can be transmitted to succeeding generations this way, with evidence 

of yield degeneration over five generations in high pressure fields in Uganda (Adikini et al. 

2015). SPVD has not yet been reported in Northern Uganda, likely because the extended dry 

season in this region is often unfavorable for the whitefly vector (Richard Gibson, personal 

observation). Changes in climate patterns or vector range, however, could potentially extend the 

range of this disease into this region. The prospect of novel pathogen introduction makes it 

important to model epidemic scenarios to inform intervention strategies.

In Northern Uganda, sweetpotato seed material is sold in small bundles of vine cuttings 

(Fig. 1). Multiplication is typically carried out by smallholder farmers who have access to a 

limited number of fields with adequate moisture to produce roots and vines through the extended 

dry season, which typically lasts from December to April (Gibson 2013). This is followed by 

distribution of vine cuttings via local markets and at farm-gate. These off-season multipliers 

generally produce local landraces, which tend to be well-adapted white-fleshed cultivars. 

(Gibson 2013). Vine cuttings are not easily stored, and because of the single, extended dry 

season in Northern Uganda, vines need to be obtained by farmers at the beginning of each season 

(Gibson et al. 2011). There are also several formal institutions involved in sweetpotato breeding 
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and distribution in Uganda, including the National Sweetpotato Program (NSP), the International 

Potato Center (CIP), private sector enterprises, and NGOs (Gibson 2013).

Survey methods 

A survey of vine multipliers and sellers was conducted in 2013 and 2014 in the Gulu 

Region of Northern Uganda, fully described by Rachkara et al. (2017) (open access data: 

(Gibson et al. 2017). A more complete cohort of multipliers and sellers was surveyed in 2014, 

the focus of our analysis. In this system, most multipliers are also vine sellers, so we simplify our 

terminology to refer to surveyed individuals as sellers. Each seller was visited weekly from the 

start of the growing season (April) and surveyed twice per week to record all transactions 

(purchases and sales) that occurred in the period since they were last visited until the end of the 

season (August). Volume of transaction (number of bundles), price, variety, origin of buyer, and 

buyer type (farmer or seller) were recorded. In this study, a small bundle refers to 50 vines cut to 

40 cm in length. Large bundles are equal to 20 small bundles. Because of the high volume of 

transactions, names of individual buyers were not collected and therefore sales transactions were 

summarized by the buyer’s village. 

Seed network analysis 

Nodes in this analysis include sellers (n = 27) and villages (n = 97), with one set of 

directed links representing vine sales from an individual seller to an individual village (a bipartite 

network, Fig. 2). Only villages that customers in the survey reported as farm locations were 

included in analyses. Villages in this region of Uganda typically are composed of 40-60 

households. Although several transactions were recorded on a weekly basis, transactions were 

aggregated for this analysis so that seller-to-village links represent the existence of at least one 

transaction over the course of the season. Seller-village links were based entirely on the data 
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from Rachkara et al. (2017). In total, the seller-village transaction network consisted of 124 

nodes (27 sellers and 97 villages). Network node statistics for this bipartite network, such as 

node strength, node degree, and degree distribution, were calculated using the igraph package 

(Csárdi and Nepusz 2006) in the R programing environment (R Core Team 2018).

A sensitivity analysis of the spread parameter describing village-to-village spread 

It is not only important to understand the movement of seed material from vine sellers to 

villages, but also to understand the potential movement of seed material or vectors between 

villages (farm-to-farm). This type of geospatial spread data was unavailable, so links between 

villages were estimated as a function of distance, and the uncertainty of the model outputs was 

quantified. We assumed, based on conventional knowledge of informal seed systems and studies 

that have evaluated movement of crop genotypes in similar systems (Delaquis et al. 2018;  

Labeyrie et al. 2016), that movement of seed or vectors would be more likely between villages 

that are more proximate, still allowing for a non-zero probability of long-distance movement. 

The probability of village-to-village spread was modeled using an inverse power law 

model and a negative exponential model, with results compared in a sensitivity/uncertainty 

analysis. The sensitivity of epidemic outcomes (methods described in detail below), along with 

the efficacy of management treatments, was compared for each dispersal kernel. The set of 

parameters was selected to represent a range of potential pathogens and patterns of informal seed 

exchange, capturing less common instances of long-distance connections. The inverse power-law 

equation used here was y = d-β, where y is the probability of movement between the villages, d is 

the distance (m) between a pair of villages, and  is the spread parameter (Jongejans et al. 2014). 

The negative exponential function was exp(-λd), where λ is the spread parameter. The matrix of 

distances (m) between villages in this study was calculated using the Haversine formula (Sinnott 
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1984) implemented using the R package geosphere (Hijmans 2017). The minimum distance 

between villages in this dataset was 100 m and the maximum was 411,436 m. An uncertainty 

analysis was performed to determine the influence of the parameters β and λ (Table 2) on link 

formation and on the resulting epidemic simulation outcomes. A range of values for both β and λ 

was selected, bounded by parameter values that produce a full network (all possible links) and a 

near-zero probability of link formation (Supplementary Figs. S1 and S2). 

 For each parameter combination and timestep, in each simulation (additional details 

about epidemic simulations described in the following section), the set of village-to-village links 

was stochastically generated using one of the above described dispersal kernels (inverse power 

law or negative exponential), and village-to-village links were combined with observed 

transaction links to form an expanded adjacency matrix or ‘supra-adjacency matrix’ (Fig. 3). A 

link in the supra-network represents a seed movement event (transaction) or movement of 

potentially viruliferous vectors (but not necessarily an infection event, which is then driven by 

the probability of transmission). 

It is important to note that only villages of farmers who purchased vines from sellers 

surveyed in this study were included in this analysis, and there may be villages in this region that 

contribute to the risk of epidemic spread, but were not included. Because of this, estimates of the 

performance of management may be biased upwards. 

Network properties, such as the number of nodes and network density, were calculated 

for the 2014 season supra-network. Node measures such as degree, strength, PageRank, and 

betweenness centrality were evaluated for both villages and sellers (Table 1). 
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Modeling epidemic spread in simulation experiments

Utilizing the above described supra-network (including both estimated village-to-village 

and observed seller-to-village links), we performed simulation experiments with corresponding 

parametric sensitivity analyses to address the following questions. (1) What are the optimum 

risk-based surveillance locations for pathogen monitoring, if there is equal likelihood of 

pathogen introduction at each node? (2) What effect does the seller (and seller node degree) by 

whom disease is introduced have on disease progress and final disease outcome? (3) How much 

can disease spread be limited by implementing intensive management interventions, where 

managed nodes (villages) cannot become infected or spread disease?  (4) How do network 

centrality statistics compare in terms of their utility for selecting intensive management 

locations? 

In each experiment, simulations were conducted over 20 timesteps and repeated 500 

times. The epidemic model was a discrete time network SI (susceptible-infected) Markov chain. 

The probability Pi,t+1 that node i either remains infected or becomes newly infected in discrete 

time is defined as

𝑃𝑖, 𝑡 + 1 = 𝑃𝑖𝑡 + (1 ― 𝑃𝑖𝑡)(1 ― 𝑞𝑖𝑡).

qit is the probability that node i does not become infected in time t,

𝑞𝑖𝑡 =  ∏
𝑗 ≠ 𝑖

(1 ― 𝜑𝑡 𝑦𝑖𝑗𝑡𝑃𝑗𝑡), 

where  is the probability of infection transmission (on an existing link), and yij is the probability  𝜑

that a link exists between nodes i and j. For the seller-to-village portion of the adjacency matrix, 

yij is based on the observed transactions, and for the village-to-village links it is based on the 

dispersal kernel (negative exponential or inverse power law). The probability of pathogen 

transmission ( ) was fixed to 0.01 for each realization.  for t = 1 is a special case affecting the 𝜑 𝑃𝑖𝑡
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initial conditions, and varies from one experiment to another as described in detail below. 

Because recovery does not occur, the diagonals of the adjacency matrix were set to 1. Sellers, 

other than the starting seller, cannot become infected during a realization (epidemic spread 

illustrated in Supplementary Fig. 3). Simulations were carried out using custom R code 

(garrettlab.com/ugsweets). 

Experiment 1: the value of villages as risk-based surveillance locations

We evaluated the importance of each village as a risk-based pathogen surveillance 

location, that is, how important the location is for monitoring new pathogen introductions into 

the region. In this scenario analysis, we evaluated all pairwise combinations with one node 

(seller or village node) as the starting point for epidemic introduction and another node being 

monitored for infection. The outcome for each node being monitored was the number of other 

nodes that remained uninfected when the node being monitored became infected, as in 

Buddenhagen et al. (2017) and the INA R package (garrettlab.com/software, (Garrett 2018)). The 

higher the number of uninfected nodes when the disease is detected at the surveillance location, 

the more options for regional disease management remain, so the surveillance location is more 

useful. In this analysis we compare both sellers and villages for their relative value for epidemic 

monitoring. Over the 500 realizations, the mean and variance of the number of nodes uninfected 

by the time the pathogen reached each node were calculated. Each node (both village and seller) 

was then assigned a “risk-based surveillance score”, defined as the mean percentage of nodes 

uninfected by the time the pathogen is present in each potential surveillance node, across all 

starting nodes. Summarizing over all the potential starting nodes allowed for comparison of the 

importance of each village as a potential location for surveillance for an introduced pathogen, 

when each potential starting location was considered equally likely.  Sensitivity analyses were 
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incorporated in this experiment to determine the influence of the dispersal kernel parameters 

(driving village-to-village link formation) on the risk-based surveillance score. We repeated the 

simulation for networks built from each of the range of parameter values ( and ) tested for 

both the inverse power law (Supplementary Fig. S1) and the negative exponential models 

(Supplementary Fig. S2). This sensitivity analysis represents scenarios where community 

exchange events range from very frequent to extremely rare. Pairwise Spearman’s rank 

correlation was calculated for all parameter combinations to evaluate how consistent the ranking 

of the village risk-based surveillance scores was across parameter values.

Experiment 2: identifying epidemic maximizers 

The second simulation experiment evaluated potential spread through the seed network, 

where each of the 27 surveyed sellers was the starting point of the epidemic. (Exclusion of 

village nodes as potential starting points was in contrast to the above scenario, where each node 

was equally like to be the starting point.) Evaluating each seller across parameter values allows 

us to determine if there are features of particular starting nodes, such as node degree, that would 

lead to an increased or decreased potential for disease spread in the system.  

In this experiment, at the start of each realization (time 1 of 20), the “starting seller” was 

assigned an infection status of one and all others were set to zero. The starting seller maintained 

infection status throughout the realizations, and all other sellers remained uninfected. Epidemic 

simulations were conducted as previously described. Villages that became “infected” after one 

time step maintained infected status in the subsequent time step (time t+1) and could thus infect 

villages to which they had links with the same probability ( = 0.01) in the subsequent time step 

(time t+2; see Supplementary Fig. S3). Once infected, villages remained infected and infectious 

throughout the course of the time series. The number of villages infected was evaluated across 20 
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timesteps in 500 realizations across the 11 parameter values of the inverse power law and 6 

parameter values of the negative exponential dispersal kernels, to evaluate the frequency 

distribution of outcomes. To evaluate the differences in disease progress between starting nodes, 

the area under the disease progress curve (AUDPC) was calculated by summing the trapezoids 

between timesteps under the curve (Madden et al. 2007).

Experiment 3: the influence of intensive management on infection dynamics

This experiment analyzed the value of five approaches for identifying locations for 

intensive management in advance of an epidemic introduction. The approaches were based on 

selection of locations according to their 1) betweenness centrality, 2) PageRank centrality, 3) 

degree centrality, 4) risk-based surveillance score, and 5) at random (details below). We 

evaluated the influence of intensive management treatments on disease progress in the network 

over time. Intensive management was defined here as the removal of the potential for a node to 

transmit or acquire infection in each time step, with selected nodes maintaining this managed 

status from time zero to time 20 (also known as node “quarantine” or “immunization” in 

epidemic network literature). Intensive management in this scenario potentially represents the 

common practical scenario of phytosanitary quarantine by regulatory agencies after the detection 

of pathogens in new regions, or the implementation of a wide-scale development effort to limit 

pathogen transmission between localities. Although complete removal is a simplification, this 

allows for exploration of the maximum level of influence of treatments, while allowing the 

analysis to focus on the effects of the network topologies on treatment efficacy and epidemic 

spread. All sellers were equally likely to be the starting point for infection, with the starting seller 

drawn at random at the start of each simulation.
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The influence on epidemics of applying intensive management to 0-97 (or 0-100% of) 

nodes was compared with a control in which there was no management treatment (zero nodes 

managed) (Supplementary Fig. S4). The effect of management treatments was evaluated across 

four representative values of the spread parameter   (0.3, 0.4, 0.5, and 0.6) in the inverse power 

law model used to estimate village-to-village spread (Supplementary Table S1), and for 

representative values of  (1e-5, 5e-5, 1e-4, and 1e-3) in the negative exponential model 

(Supplementary Table S2). Nodes (villages only) for management were selected based on their 

rank for each of the five methods, in simulations implemented over 20 timesteps in 1,000 

realizations. The AUDPC was calculated for each management treatment, across values of β and 

, based on the percent of nodes infected at each time step (excluding those selected for 

management).

We performed the above management analysis with villages selected based on their rank 

for node betweenness centrality (Freeman 1979), PageRank centrality (Brin and Page 1998), and 

degree centrality in comparison to a scenario where villages were drawn at random (Table 1). 

We also compared the utility of these key network node statistics (Table 1), with the use of the 

previously calculated risk-based surveillance score (calculated in Experiment 1). Node centrality 

measures (node degree, betweenness, and PageRank centrality) were calculated by taking the 

mean of each of these centrality measures for 1,000 networks generated stochastically for each of 

the values of the spread parameters ( and ). 
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Results 

General network properties

In 2014, 27 sellers were tracked, resulting in a total of 878 individual vine sales to 

farmers from 97 distinct villages in Uganda. The seller-to-village portion of the adjacency matrix 

was estimated based on aggregated transactions from sellers to villages (Fig. 2). This network 

has a total of 124 nodes and 204 links (link density = 0.013) with a degree distribution that 

appears to approximately follow a power-law, or scale-free, distribution (Supplementary Fig. 

S5). The addition of estimated village-to-village links increased the number of links, as a 

function of the parameter chosen for the dispersal kernel (Supplementary Figs. S1 & S2). The 

number of links roughly represents the number of potential vine transactions, or movement of 

vectors, in each time step in simulation experiments. Node degree, or the number of incoming 

(in-degree) and outgoing (out-degree) links was calculated for each seller node (mean = 7.6, min 

= 1, max = 42). Node degree was positively correlated with node strength, or the sum of all a 

seller’s transactions (Pearson’s correlation coefficient  = 0.86, Supplementary Fig. S6). Node 

degree, betweenness centrality, and PageRank centrality were also measured for all villages in 

this analysis (Table 1) and used in subsequent analyses. 

Variety dissemination 

Fifteen cultivars were sold during the 2014 season (Supplementary Fig. S7), including 

landraces (all white-fleshed) and cultivars introduced by the national breeding program 

(Supplementary Fig. S7). Six of these cultivars were OFSP cultivars, and were disseminated by 

only two sellers, in many individual transactions (Supplementary Fig. S7). By comparison, the 

most common white-fleshed landrace, Ladwe Aryo, was sold by 25 distinct sellers in hundreds 

of transactions throughout the season. When the network is examined separately by variety, 
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disaggregation becomes apparent (Fig. 4). Although both Ladwe Aryo and the OFSP cultivar, 

Ejumula, reached 51 villages each, only eight of these villages purchased both (Fig. 4).  

Evaluating networks representing the distribution of the top eight varieties to villages in the 

network (Fig. 4) indicates that only a small number of sellers and villages were purchasing 

orange-fleshed varieties from the sellers surveyed. It appears, from this survey, that most 

individuals from a single village only bought a single variety, even when they had access to 

multiple sellers. 

Experiment 1: the value of villages as risk-based surveillance locations

For the scenario where each node was an equally likely starting point for an epidemic, we 

evaluated the value of each village for surveillance, and assigned each a risk-based surveillance 

score. A village was considered a more effective surveillance location if a large proportion of 

other nodes were still uninfected when the pathogen reached that village. We repeated this 

experiment across 11 values of β and 6 values of λ, the spread parameters used to drive the 

inverse power law and negative exponential models of link formation between villages, 

respectively. For the inverse power law model, we found that at low and high values of the 

spread parameters, surveillance scores were similar for all nodes (Fig. 5c), likely due to very 

high or very low network connectivity at these extremes. Nodes differed in their value for 

surveillance primarily at intermediate values of the parameters. For a reference value of β = 0.4 

(corresponding to ~2 links/village (Supplemental Table 1)), the mean percent of nodes still 

uninfected by the time the pathogen reached any given node ranged from 46% to 70% (Fig. 5a). 

Higher values are desirable because they indicate that the pathogen will be detected at this node 

when a relatively high number of villages remain uninfected, for more efficient monitoring. 

Sellers had the lowest values, and village values ranged from 51% to 70% (Fig. 5b).  The village 
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with the highest risk-based surveillance score (70%) was V_86, i.e., having the highest mean 

number of villages uninfected by the time the pathogen would be present at that village (Fig. 5a). 

Interestingly, these nodes also had a relatively high average node degree (Fig. 5b), and overall, 

for power law parameter β = 0.4, the risk-based surveillance score was positively correlated with 

node degree (Spearman’s rank correlation coefficient = 0.33, p-value = 0.0002). 

As  increased, the number of village-to-village links in the network decreased, and the 

risk-based surveillance score increased, across all nodes (Fig. 5c). The lower values of the spread 

parameter greatly decrease the probability of link formation between villages, dramatically 

limiting disease spread so that sellers and their links become the biggest drivers of epidemic 

spread and thus their value for surveillance increases slightly (Supplementary Video 1). On the 

other hand, as  decreased, more links were added between villages and thus infection levels 

increased (Fig. 5c). When the spread parameter is very low ( = 0.0001), nodes all tended to 

have similar utility as surveillance locations, as the pathogen rapidly colonized the network in 

most scenarios (Supplementary Video 1). Prioritizing nodes based on a risk-based surveillance 

score will be most useful when there is intermediate exchange between communities in any 

given season. 

To assess the influence of the model chosen for village-to-village links, this experiment 

was also conducted for networks estimated for six values of the spread parameter  of the 

negative exponential model (Supplementary Figs. S8 and S9, Supplementary Video 2). Although 

the number of links generated varied across parameter values, and as a function of the kernel 

chosen to model spread, the rank of nodes was highly correlated based on Spearman’s rank 

correlation coefficient (Fig. 6). Correlations were particularly high for intermediate spread 

parameter values, and lower at the extremes, indicating that the main model outcome (the 
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selection of important locations to monitor), may not be sensitive to the parameter chosen, 

provided the parameter value is intermediate.

Experiment 2: modeling epidemic progress as a function of starting seller 

All 27 sellers were compared as starting nodes for an introduced epidemic simulated over 

20 timesteps in 500 realizations, and results were evaluated across the parameter ranges of  

(Fig. 7) and  (Supplementary Fig. S10). Mean AUDPC for infections starting with each seller 

were compared across parameter values, based on seller node degree (Fig. 7). Seller node degree 

ranged from 1 to 42, with sellers with the lowest node degree (sellers 8, 14, and 12, node degree 

= 1) having the lowest mean AUDPC across parameters for each dispersal kernel. Similarly, the 

seller nodes with the highest node degrees (seller 25, node degree = 24; and seller 15, node 

degree = 19) had the highest AUDPC values across parameter values (for node 25,  = 0.00001, 

mean AUDPC = 1751; and  = 0.9, mean AUDPC = 840). AUDPC declined with increasing  

(decreasing links) across all nodes, in which case the starting node seemed to be the most 

important drive or epidemic progress.  There was an exception, however, at intermediate values 

of  where it appears that network topology (not starting node) influenced disease progress more 

than at the extreme parameter values (Fig. 7). A similar trend was observed for the six parameter 

values of  (Supplementary Fig. S10).

Experiment 3: the influence of management on infection dynamics

This experiment was conducted to evaluate the utility of particular villages, based on 

common network centrality statistics, for preventative intensive management in the case of a 

novel pathogen introduction into the region. We evaluated the influence of intensively managing 

villages, which here is a simplified scenario where villages cannot become infected or transmit 

infections to other villages in the network. Nodes were selected based on node degree rank, 
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betweenness centrality, PageRank centrality, and the risk-based surveillance score (calculated in 

the first experiment). Mean node degree for the 40 nodes selected as management candidates 

ranged from 5.0-13.7, 1.5-6.0, 0.6-2.8, and 0.2-1.4 (with the highest selected first) for each value 

of   (0.3, 0.4, 0.5, and 0.6), respectively. Mean betweenness centrality values ranged from 53.2-

331.2, 31.8-433.4, 0.3-18.5, and 0.0-0.9 and mean PageRank values from 0.0-0.013, 0.0-0.01, 

0.01- 0.01, and 0.01-0.01 for each value of , respectively. Generally, the rank of nodes was 

correlated across  values (Supplementary Fig. S11).

Across each value of , node degree was the most effective criterion for removing nodes 

to slow epidemic progress, when compared to betweenness centrality, PageRank centrality, risk-

based surveillance score, and random selection of villages. For  = 0.3, AUDPC decreased by 

11%, 40%, and 56%, when 10, 40, and 70 nodes were managed, when compared to no 

management. A similar trend was found for  = 0.4, 0.5, and 0.6 (Fig. 8a, Supplementary Fig. 

S12a).  It was not surprising that the “smart” selection criteria (centrality measures and 

surveillance score) almost always outperformed the “naive” selection criteria (randomly 

selecting villages to manage) (Fig. 8, Supplementary Fig. S12). The effects of management were 

more pronounced with increasing  (Fig. 8), indicating that containment of an infection may 

become more difficult as the number of links in the network increases. As  increases ( = 0.4 

and 0.5), PageRank centrality also greatly limits disease spread across 0-90% managed nodes, 

although using node degree still slowed disease progress as well as, or better than, other 

centrality measures. At  = 0.6, all methods except randomly selecting nodes perform similarly, 

indicating that the fewer links, the easier it is to control an outbreak. 

Interestingly, the best method for node selection was betweenness centrality across values 

of  for networks generated using the negative exponential model (Fig. 9, Supplementary Fig. 
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S13). This is likely driven by the ‘thin-tailed’ feature of the exponentially-bound kernel, which 

results in exponentially decreasing likelihood of a link with distance, making the nodes with high 

betweenness centrality key for managing an outbreak. Across values of lambda, each of the 

“smart” selection criteria outperform the treatments where nodes were selected randomly for 

management (Fig. 9). Degree centrality, betweenness centrality, Page Rank centrality and the 

risk-based surveillance score were positively correlated across values of  (Supplementary Fig. 

S14).

Discussion

This analysis addressed a practical question in network epidemiology as to which nodes 

are best for risk-based pathogen surveillance, intensive management and epidemic maximization, 

and if they are one in the same (Holme 2017;  Radicchi and Castellano 2017). Our findings are 

consistent with analyses of exact small graphs (Holme 2017) and real-world networks (Radicchi 

and Castellano 2017), which suggest that optimal locations for each of these purposes may be 

different. This is an important consideration for management of plant disease epidemics in 

landscapes where there are simultaneous efforts to monitor pathogen introduction and also 

reduce spread. 

The question of the optimal surveillance locations in a region is critical if there is any 

chance for mobilization of management tactics at a landscape level. Villages in the Gulu region 

of Northern Uganda that were included in the present study were identified as potential risk-

based surveillance targets based on the observed frequency, in simulations, with which the 

pathogen would be detected in these locations before substantial parts of the rest of the network 

become colonized. This surveillance score (Buddenhagen et al. 2017;  Garrett et al. 2018) 
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calculated for villages was highly correlated across intermediate spread parameters when 

comparing the parameter range both within and between the two dispersal models (both the 

negative exponential and inverse power law model). The insensitivity of surveillance node 

selection to dispersal parameter values is an important feature for its potential application across 

seed systems, suggesting that the exact number of links between locations is not critical for 

identifying the best locations for surveillance. The ability to generalize selection criteria for 

surveillance across parameter values is an important finding for informal seed systems, where 

data are often unavailable, and deserves future attention to evaluate the translation of this method 

across pathosystems. The identification of risk-based surveillance locations in the landscape can 

complement field-based diagnostic technologies, such as loop-mediated amplification (LAMP) 

assays (Yasuhara-Bell et al. 2016) or smartphone-assisted crop disease image detection 

(Mohanty et al. 2016), which are becoming increasingly available to practitioners and have the 

potential for rapid on-site detection of viruses and other pathogens. The method used here, 

applied to a region in northern Uganda, can also support pathogen surveillance efforts on a 

national or greater scale.    

To answer the question of which nodes serve as ‘epidemic maximizers’, we identified 

sellers with the highest potential for disease spread in the network if they served as the 

introduction point for an epidemic (with infected planting material). We found in experiment 2 

that the node out-degree of the “starting seller” (or the seller with infected planting material) 

appeared to drive the severity of epidemic progress, similar to the trend observed on hypothetical 

small networks (Pautasso et al. 2010). Interestingly, the influence of these high-degree sellers, 

who also were the main sellers of OSFP varieties, remained constant across the two dispersal 

kernels tested for link formation (the negative exponential model and the inverse power law 
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model) and across a suite of spread parameters evaluated for each in a sensitivity analysis. Our 

findings expand upon previous studies indicating that the epidemic starting point influences both 

epidemic progress and epidemic outcome (Pautasso 2015;  Pautasso et al. 2010). The epidemic 

maximizers may also be variety adoption maximizers, taking into account both seed sales and 

potential village-to-village spread of new varieties based on village proximity.

In this system we compared several node centrality measures for their utility to limit 

epidemic spread when intensively managed. Centrality measures are important indicators of risk 

within epidemic networks (Banks et al. 2015;  Holme 2017;  Kiss et al. 2006). In this case 

management was represented as the complete quarantine or immunization of a node in the 

network. We found that across a range of scenarios for the power law model of dispersal, node 

degree centrality performed as well as, or better than, centrality measures that take into account 

the broader network topology (PageRank centrality, betweenness centrality, or risk-based 

surveillance score), and always better than a random selection of nodes. The finding of 

comparable or better control with management targets selected based on node-degree is 

important for the mitigation of invasive pathogens in plant exchange networks because node 

degree is one of the simplest centrality measures to collect and calculate (Christley et al. 2005). 

Furthermore, this confirms findings from human epidemiology literature (Lloyd-Smith et al. 

2005) in large scale networks where node-degree has been shown to be comparable to more 

complicated centrality measures for the selection of nodes to be immunized (Salathé et al. 2010). 

We found that when the village-to-village dispersal was modeled by the negative exponential, 

however, betweenness performed as the best choice for mitigating epidemic spread. Node 

betweenness is based on the average number of shortest paths in which a node is included, and 

may prove to be a better option when spread is primarily local or on small-world networks 
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(Holme et al. 2002). Centrality measures have also been explored in animal trade networks, 

where centrality measures (such as degree) have been significantly associated with on-farm 

disease levels and disease progress (Kiss et al. 2006;  Lee et al. 2017;  Salines et al. 2018), and 

deserve further attention for plant disease epidemics in landscapes. 

As a general strategy, in times of epidemic emergence high-degree locations are good 

candidates to be targeted for control strategies, such as quarantine in the form of phytosanitary 

regulation. Similar methods to those described here may be used to target villages for 

development projects that aim to disseminate resistant varieties to key hubs and maximize both 

the spread of disease resistance genes and the impact of these genes on epidemics. The presence 

of resistant sweetpotato varieties in the landscape has been associated with a decrease in virus 

incidence (Aritua et al. 1999). However, betweenness centrality may prove to be more important 

for identifying key nodes in some other types of seed systems or landscapes, in which there are 

many nearly separate modules with a small number of links between them. In such seed systems, 

the nodes with high betweenness centrality that bridge these modules might be particularly 

important for surveillance or quarantine.

Although management treatments were effective at slowing epidemic progress when a 

large percentage of nodes were included, here we found that management was not sufficient for 

halting epidemic spread under any scenario (when less than 100% of nodes were quarantined). 

This property of rapid disease spread is consistent with other scale-free networks, where high-

degree “super-spreaders” can rapidly transmit disease to other nodes in the network in a small 

number of steps (Banks et al. 2015;  Jeger et al. 2007;  Lloyd-Smith et al. 2005). Rapid spread is 

also a property that is consistent with other plant disease epidemics where dispersal includes 

low-probability long distance dispersal events (Mundt et al. 2009;  Severns et al. 2018).
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Future research should not only aim to assess the efficacy of management introduction at 

key nodes, but may also include economic considerations. Cost-effectiveness has been studied, 

for example, for large scale disease reduction strategies in Sub-Saharan African maize (Wu and 

Khlangwiset 2010). Economic considerations may dictate optimal thresholds for phytosanitary 

policy in seed systems, where standards that are too high allow for no production, and standards 

that are too low allow for extensive disease spread (Choudhury et al. 2017). There is also the 

potential for policies to integrate risk due to network structures and risk due to climate disease 

conduciveness for establishing phytosanitary thresholds. Previous models have included both the 

costs and benefits of disease control on hypothetical small-world and local lattice networks 

(Kleczkowski et al. 2012), a method that could be extended to this framework by adding terms 

for the cost of implementing large-scale interventions to control plant disease, along with the 

potential benefits. In the case of orange-fleshed sweetpotato, benefits would be in terms of 

household food security, household profit, and health outcomes. Future research should also 

consider the influence of the deployment of other components of an integrated seed health 

strategy (Thomas-Sharma et al. 2017) into models for epidemic mitigation, such as positive 

selection, resistant varieties, clean seed, and education about disease progress and management 

strategies. Integrated seed health strategies may be easier and more cost effective to deploy than 

strict phytosanitary restrictions or introducing complete ‘quarantine’ of villages in these systems, 

where ethnobiological associations are major drivers of exchange between villages, and access to 

certified clean planting material may be minimal to non-existent. 

It is important to note that this study was based on data limited to sellers that participated 

in weekly monitoring in the Gulu region of Northern Uganda. While there was an intensive effort 

to identify sellers, there may have been other sellers or sources of vines that were not captured. 
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In addition, there are other villages with sweetpotato fields in the region of study that could 

possibly be sources of disease, but were not included in this analysis because they were not 

associated with a buyer in the dataset. In the model used here, once nodes become infected, they 

remain infected (and infectious) through the duration of the time course. Because there may be 

options for epidemic recovery in this sweetpotato seed system (through reversion, roguing, or 

positive selection), future studies may include a recovery term in the model. Also, in our model 

disease presence is taken to coincide with disease detection, however a lag in detection would be 

a useful feature to explore in a future model. Another outstanding question is the influence of 

multiple, simultaneous starting points on epidemic progress and outcomes in seed systems.

Along with epidemic potential, the analysis of network topologies presented here shows 

how sales of OFSP varieties and landrace varieties differed. When vine distribution was 

disaggregated by variety, it was clear that most cultivars were not well disseminated by seller-to-

village links (Fig 4). We found that a single white-fleshed landrace variety, Ladwe Aryo, 

dominated landrace sales in this season, while a single OFSP vine, Ejumula, dominated OFSP 

sales (Fig. 4). Interestingly, there is little overlap between the villages where farmers bought 

these varieties. Based solely on the observed sales, we cannot determine whether it was 

preference or availability of planting material of OFSP varieties that drove sales, or a 

combination of the two. This distinction is important, however, because much effort has been 

made to promote improved OFSP varieties in recent decades (Low et al 2017). In a study in 2015 

(Obong et al. 2017), 89% of 51 multiplier fields sampled in the Gulu region during the 2015 off-

season grew local landraces, with the remainder of area planted to improved varieties. This 

proportionally low rate of adoption might be attributed to the very recent introduction of OFSPs 

into the region (with promotion by HarvestPlus and affiliated NGOs), and adoption may increase 
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in coming years, if these varieties become accepted by farmers and there remains an adequate 

local supply of vines provided by these informal sellers. Seed exchange is often closely related to 

kinship ties, language, and social organization patterns (Abizaid et al. 2016;  Labeyrie et al. 

2016;  Perales et al. 2005;  Westengen et al. 2014) and future research to better model the 

influence of social structure on variety diffusion in this seed system network could inform 

strategies to increase OFSP adoption. Useful future studies could assess the rate of adoption over 

time in the landscape, to determine the implications of the models of spread that we presented for 

each type of variety.

There is a trade-off in the effects of high centrality in seed networks. That is, it is 

favorable to be a village with high degree (many links) because of the increased availability of a 

diversity of cultivars (like OFSP varieties), from more sellers. On the other hand, high levels of 

connectivity can make a village more susceptible to pathogen invasion and increases its 

likelihood of serving as an epidemic “superspreader”, as illustrated by our management 

experiments where, after high-degree villages were managed, the epidemic was successfully 

reduced.

Understanding the dynamics of epidemics in seed systems is critical for effective pathogen 

monitoring, risk assessment, and epidemic management (Buddenhagen et al. 2017;  Garrett et al. 

2018;  Harwood et al. 2009;  Shaw and Pautasso 2014). Although some plant disease literature 

explores this topic, research on epidemics in real world seed networks is still in an early stage. 

Future surveys that include questions about social ties and the movement of information among 

farmers will support better models of variety adoption and distribution in seed systems. Next 

research steps will include more finely parameterizing transmission patterns, including the 

impact of variety resistance and vector biology, and modeling system adaptation to sustained 
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exogenous shocks and stressors. There is the potential to include data about known yield 

degeneration rates and known environmental conditions (Thomas-Sharma et al. 2017) to predict 

regional yield loss in the case of pathogen introduction. One of the challenges for developing 

strategies for epidemic management in seed systems may be a tendency for each seed system to 

have different optimization requirements (Holme 2018;  Kleczkowski et al. 2012). The 

framework we present here can be applied to seed systems in general to evaluate nodes key to 

the spread of new varieties, and nodes key to epidemic surveillance and management. 
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Table 1.  Network node centrality measures 

Measure Definition Relevance for Epidemics in Seed 
Systems 

Degree Centrality The number of links a node has to 
other nodes in the network (both 
incoming and outgoing)

Node degree of epidemic starting point 
(number of links) has been shown to 
influence epidemic outcomes. Those 
with high degree may be “super 
spreaders” once infected

Betweenness centrality  The number of shortest paths 
through the network of which a 
node is a part (Freeman 1979)

A measure of how much a node serves 
as a “bridge” to new nodes. Removal of 
nodes with high betweenness may 
contain an epidemic within a region

 PageRank centrality A special case of eigenvector 
centrality, also known as the 
Google algorithm. A weighted sum 
reflecting both direct links to a 
node (degree) and the node degree 
of neighbors, suitable for directed 
networks  (Brin and Page 1998)

If a node does not itself have a high 
node degree, but is connected to nodes 
with high degree, it may still be at 
increased risk of infection and 
spreading infection. And high-degree 
nodes may be even more important if 
they have high-degree neighbors.

Risk-based surveillance 
score

The number (or percentage) of 
nodes that remain uninfected at the 
time when infection occurs at the 
node in question (Buddenhagen et 
al. 2017;  Garrett 2018)

A higher score indicates greater utility 
for surveillance at a node being 
considered, but not necessarily greater 
utility for management at that node
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Table 2. Parameters describing dispersal probabilities in a seed system network

Parameter Definition Values Comments
β Exponent of the power 

law, where  β > 0. 
0.0001-0.9 (0.0001, 0.01, 
0.1, 0.2, 0.3*, 0.4*, 0.5*, 
0.6, 0.7, 0.8, 0.9)

Larger values of β result 
in steeper declines in the 
probability of movement 
with distance, and thus 
fewer village-to-village 
links 

 Scale parameter of the 
exponential model  

0.000001-0.002 
(0.0000001, 0.00001*, 
0.00005*, 0.0001*, 
0.001*, 0.002)

Larger values of λ result 
in fewer village-to-village 
links, probability of a link 
declines exponentially 
with distance 

 Probability of 
transmission of infection 
at each timestep, over an 
established link from an 
infected node to a 
susceptible node

0.1* Applied to both seller-to-
village and village-to-
village links

*indicates the value that was used as the default in simulation experiments 
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Figure 1

Sellers in the Gulu region of Northern Uganda selling sweetpotato vines in 2014.  Photo credit 

Paul Rachkara 

Figure 2

Network structure of sweetpotato vine transactions reported in the 2014 growing season in 

Northern Uganda with both sellers (purple/lighter nodes) and villages (blue/darker nodes). Links 

represent the occurrence of at least one transaction in the 2014 growing season. Graph layout 

was generated with the Davidson-Harel layout algorithm, and does not represent the geographic 

locations of villages.

Figure 3 

Schematic illustrating how two types of data were combined: A) seller-to-village links reported 

in the 2014 vine seller survey, and B) village-to-village links estimated based on the distance 

between villages using an inverse power law or negative exponential model of the probability of 

movement. The schematic represents a hypothetical network of three sellers and five villages, 

each represented as a node in the network. A link between nodes is represented as a 1 in the 

matrix, and absence of a link is indicated by a 0. Matrices were combined in C) a “supra-

network” with both seller-to-village and village-to-village links. Note that in this study all 

potential seller-to-seller links and village-to-seller links were set to zero, with no transactions 

taking place in this direction. A “supra-network” based on the Ugandan sweetpotato data was 

used in the simulation experiments presented in this study. 
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Figure 4

Networks of dissemination of the top eight cultivars sold during the 2014 growing season, in 

terms of number of transactions reported. All sellers and villages surveyed are represented in 

each network, while filled nodes represent sellers and villages involved in the sale or purchase of 

the specified cultivar. Unfilled villages did not access a given variety in 2014 through this 

surveyed seed network. Node shade indicates white-fleshed landraces (darker) and OFSP 

(lighter) cultivars.

Figure 5

For the scenario where each node was an equally likely starting point for an epidemic, we 

evaluated the value of each village based on a ‘risk-based surveillance score’, or mean 

percentage of nodes still uninfected by the time the pathogen reaches that node in simulations 

(A). Higher values indicate better potential for detecting the pathogen at this location prior to the 

colonization of the remainder of the network. (A) Network constructed from the transaction 

matrix and estimated with the inverse power law model with an intermediate value of the spread 

parameter   (0.4). Additional graphs for the values of   are in Supplemental Video 1. Network 

has a total of 124 nodes (97 villages and 27 sellers) with 380 links (204 from sellers-to-villages 

and 176 between villages). Circles represent villages and squares represent sellers. The graph 

layout is based on the Davidson-Harel layout algorithm, which locates nodes with links closer 

together and those without links farther away according to a simulated annealing algorithm 

(implemented in igraph). (B) Individual node degree (sum of incoming and outgoing links) 
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against “Mean percent villages uninfected (%)” with seller nodes lighter (purple online), and 

village nodes in darker (blue online), for   = 0.4. (C) The “Mean percent nodes uninfected (%)” 

for each node, for each of 11 values of the spread parameter   evaluated.   = 0.4 is highlighted 

to indicate that it has been visualized in the network graph. Network illustrations for other   

values are in Supplemental Video 1. 

Figure 6

Spearman’s rank correlation for risk-based surveillance scores across parameter values for 

spread parameters  (negative exponential) &  (inverse power law).

Figure 7

Model sensitivity to the spread parameter β, from the inverse power law model. Graph shows 

pointwise mean AUDPC for disease progress over 20 timesteps, over 11 values of β. Each line 

indicates one the 27 sellers (seller ID numbers labeled in gray) was the starting point for disease 

in the network. Subsequent disease progress is through the network of villages in the landscape. 

Each point represents the AUDPC for 500 realizations of disease spread through the network. 

Line color represents node degree (total number of incoming and outgoing links) for each seller. 

Figure 8

Sensitivity analysis results across four intermediate values of the spread parameter, , of the 

inverse power law model of link formation. Mean AUDPC values were calculated across five 

scenarios where 0-100% of villages were intensively managed, in increments of 10. Managed 

nodes were selected based on five methods: node betweenness centrality, degree centrality, 
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PageRank centrality, Surveillance Score (calculated in experiment 1), and random selection. 

Each point represents mean AUDPC based on the percent of nodes infected out of those not 

quarantined over the course of 20 timesteps across 1000 realizations. There were 97 villages total 

in the system and 27 sellers. The seller that served as the starting point for the epidemic in each 

simulation was drawn at random. The slight increase in mean AUDPC for the case where 90% of 

nodes are quarantined is a function of the small number of nodes (~10) remaining with the 

potential for infection. When these do become infected, it leads to a larger percentage of 

potential nodes infected (illustrated in Supplementary Fig. S15). Values for the treatment where 

100% of nodes were quarantined, although undefined, are represented as zero. 

Figure 9

Sensitivity analysis results across four intermediate values of the spread parameter, , of the 

negative exponential model of link formation. Mean AUDPC values were calculated across five 

scenarios where 0-100% of villages were intensively managed, in increments of 10. Managed 

nodes were selected based on five methods: node betweenness centrality, degree centrality, 

PageRank centrality, Surveillance Score (calculated in experiment 1), and random selection. 

Each point represents mean AUDPC based on the percent of nodes infected out of those not 

managed over the course of 20 timesteps across 1000 realizations. There were 97 villages total in 

the system and 27 sellers. The seller that served as the starting point for the epidemic in each 

simulation was drawn at random.  The slight increase in mean AUDPC for the case where 90% 

of nodes are quarantined is a function of the small number of nodes (~10) remaining with the 

potential for infection. When these do become infected, it leads to a larger percentage of 
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potential nodes infected (illustrated in Supplementary Fig. S15). Values for the treatment where 

100% of nodes were quarantined, although undefined, are represented as zero.
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